The Effect of CH$_3$NH$_3$PbI$_3$ Concentration Precursor on the TiO$_2$/CH$_3$NH$_3$PbI$_3$ Thin Film Morphology in Perovskite Solar Cell

Solar Energy Research Institute (SERI)
University Kebangsaan Malaysia (UKM)
Selangor, Malaysia
fadhilah0129@gmail.com, suhailas@ukm.edu.my, fairuzmydr@gmail.com, sheekeen@ukm.edu.my, mdadib@ukm.edu.my, asri@ukm.edu.my, saleemzaidi@ukm.edu.my

Abstract—Surface morphology and film formation of every functional layer are crucial parameters of the perovskite solar cell. However, imprecise control of concentration, solvent choice, composition and annealing temperature affect the crystallization process cause unwanted defects such as pinholes and grain boundaries. In this study, the thin film of titanium oxide/methylammonium lead iodide (TiO$_2$/CH$_3$NH$_3$PbI$_3$) was deposited on fluorine-doped tin oxide (FTO) glass by one-step solution technique and the concentrations of CH$_3$NH$_3$PbI$_3$ were controlled to optimize surface morphology and film formation. The smooth and uniform of CH$_3$NH$_3$PbI$_3$ thin film formation with a low amount of voids and high absorbance were yielded regarding the increased concentration of CH$_3$NH$_3$PbI$_3$ precursor solution. Additionally, the chlorobenzene (CBZ) dripping enhanced the uniformity CH$_3$NH$_3$PbI$_3$ thin film. A good correlation between the surface morphology of TiO$_2$/CH$_3$NH$_3$PbI$_3$ thin film and UV-Vis absorbance spectra were also obtained in this study.

Keywords—concentration; methylammonium lead iodide; surface morphology; absorbance spectra

I. INTRODUCTION

Perovskite solar cells (PSCs) gained a great attention in solar cell research due to its fast-growing performance of efficiency up to 22.1 % within approximately ten years [1]. A key success of the PSCs is mostly attributed to strong absorbing direct bandgap with ~1.6 eV, high carrier mobilities [2], shallow defect levels [3] and the long diffusion length of charge carriers in the absorber perovskite layer [4]. These parameters are expected to depend strongly on film crystallinity and morphology.

Perovskites exhibit the simple AMX$_3$ (cations, A, metal, M, anion, X) base configuration that rich in diversity of composition, structure, and properties [5]. The great interest of the organometal halide CH$_3$NH$_3$MX$_3$ (M = Pb or Sn, X = Cl, Br or I) due to its efficient light harvesting. This perovskite material is stabilized mostly as a tetragonal crystal structure at an ambient temperature and is compatible with both solution processing and evaporation techniques [6]. Moreover, the CH$_3$NH$_3$PbI$_3$ thin film was simply prepared from methylammonium iodide (MAI) and lead (II) iodide PbI$_2$ precursors through a simple one-step solution process, which is inexpensive fabrication and ease of processing [7]–[9].

The best fabrication technique of the PSCs also becomes one of the important factors to attain the success of the development this type of solar cell. In recent years, the solution-processing becomes the best and common fabrication technique for thin-film solar cells especially PSCs. The solution-processing includes spin-coating, blade-coating, spraying, inkjet printing, gravure printing, or slot-dye coating [8]. However, lacking skill implementation during these processes especially one-step solution process (spin-coating) can affect the performances of perovskite solar cell. Therefore, some parameters must be taken into account such as solution concentration, solvent choice, composition, annealing temperature etc.

As the film crystallinity and morphology are significant parameters to develop high-performance PSCs, thus morphology quality of the perovskite thin films must precisely control. However, it is not easy to precisely control the thickness, uniformity and composition of precursor to improve the crystallinity and morphology of the PSCs. Therefore, this study puts some efforts to improve and enhance the film morphology of CH$_3$NH$_3$PbI$_3$ as it is widely used and has a reliable absorber property. As one-step solution process is simple and ease in processing, the process will be used by controlling the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution. The chlorobenzene was used as anti-solvent to improve the crystallinity and morphology. The implementation of anti-solvent is proven effectively assist the perovskite crystallization process [10].

Therefore, this study emphasized the film morphology such as surface roughness regarding the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution by atomic force microscopy (AFM) scan. In addition, the optical property such as UV-Vis absorbance spectra and the correlation between this film morphology and optical property of CH$_3$NH$_3$PbI$_3$ precursor solution were also been discussed.

This work supported Universiti Kebangsaan Malaysia under Geran Universiti Penyelidikan project (GUP-2017-077).
II. EXPERIMENTAL SECTION

A. Substrate and CH$_3$NH$_3$PbI$_3$ Precursor Preparation

The 2x2 cm2 FTO glasses (Solaronix, 15 Ω/sq) were cleaned and sonicated with acetone, ethanol and isopropanol in an ultrasonic bath, each for 15 minutes. Then, the nitrogen gas was used to purge the glasses. A compact TiO$_2$ layer was formed through the spin-coating of TiO$_2$ blocking layer solution at 3000 rpm for 35 s and subsequently annealed at 500 °C for 60 minutes. A TiO$_2$ blocking layer (Dyesol, BI-1) was diluted by ethanol with a ratio of 1:9 to prepare the TiO$_2$ blocking layer solution.

To form the CH$_3$NH$_3$PbI$_3$ precursor solution, methylammonium iodide (MAI) and lead (II) iodide (PbI$_2$) (Sigma-Aldrich) were dissolved in anhydrous N, N-Dimethylformamide (DMF), at a 1:1 molar ratio of MAI to PbI$_2$. To explore the effect of the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution on the TiO$_2$/CH$_3$NH$_3$PbI$_3$ films, four types of CH$_3$NH$_3$PbI$_3$ precursor solutions with different concentrations (0.8 M, 1.0 M, 1.2 M, and 1.4 M) were prepared.

B. TiO$_2$/CH$_3$NH$_3$PbI$_3$ Thin Film Fabrication and Thin Film Characterization

To form the perovskite layer, the CH$_3$NH$_3$PbI$_3$ precursor was spin-coated on the substrate with TiO$_2$ blocking layer in a nitrogen filled glovebox, at 3000 rpm for 25 seconds. 5 seconds before the end of the last spin coating step, chlorobenzene (CBZ) was dripped onto the rotating sample, which resulted in an improved uniformity of the CH$_3$NH$_3$PbI$_3$ crystal growth. The sample was then annealed at 100 °C for 60 minutes.

The absorption was characterized by LAMBDA 950/1050 UV/VIS/NIR Spectrophotometer from Perkin Elmer. The surface morphology images were obtained from atomic force microscopy (AFM). The thickness of the TiO$_2$/CH$_3$NH$_3$PbI$_3$ thin film was measured by a DEKTAK 150 Surface Profiler from Veeco.

III. RESULTS AND DISCUSSION

MAI and PbI$_2$ dissolved in the DMF solvent by ratio 1:1 was employed as the precursor solution. The concentration of precursor solutions was varied into four types; 0.8 M, 1.0 M, 1.2 M and 1.4 M respectively. In this study, the one-step deposition technique is used where the CH$_3$NH$_3$PbI$_3$ precursor solution was spin-coated on the FTO glass and followed by dripping CBZ as antisolvent. The detailed preparation process of TiO$_2$/CH$_3$NH$_3$PbI$_3$ films as described as following: the perovskite precursor solution is deposited onto the compact TiO$_2$ coated substrate by spin coating at 3000 rpm for 25 seconds and the antisolvent was dropped at last 5 seconds. The deposited film was annealed at 100 °C for 60 minutes on the hot plate.

From the observation, the formation process of CH$_3$NH$_3$PbI$_3$ films can be divided into two stages. The first stage is the nucleation of the intermediate of MAI: PbI$_2$ during the spin coating induced by solvent evaporation, while the second stage is the structural transformation from the intermediate of CBZ. CBZ plays the important role in the formation of the CH$_3$NH$_3$PbI$_3$ film due to its behaviour delays the transformation structure and crystal growth of CH$_3$NH$_3$PbI$_3$ until annealing process [11]. Hence, the result showed that the CH$_3$NH$_3$PbI$_3$ films are smoothly formed onto FTO glass with TiO$_2$ layer and the colour of CH$_3$NH$_3$PbI$_3$ precursor solution was changed into dark brown right after the spin coating process. Without the dripping of CBZ, the reaction of lead iodide (PbI$_2$) and methylammonium iodide (MAI) is quite fast during spin-coating and the effect of fast crystallization of this perovskite material. The CH$_3$NH$_3$PbI$_3$ film formation without CBZ can be seen in Fig. 1 (a). Fig. 1 (b) shows the diagram of the formation of the TiO$_2$/CH$_3$NH$_3$PbI$_3$ film on the FTO glass with dripping CBZ at last 10 seconds and it does not show a good film formation. This is due to the liquid film starts to dry after 7 seconds and the addition of CBZ does not improve the film formation [11]. Fig. 1 (c) shows a quite good CH$_3$NH$_3$PbI$_3$ film formation by dripping CBZ at last 5 seconds and has a good agreement with the previous study [11].

A. TiO$_2$/CH$_3$NH$_3$PbI$_3$ Film Morphology

As the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution was varied into four types of concentration; 0.8 M, 1.0 M, 1.2 M and 1.4 M, there are some morphology effects that can be indicated through Surface Profiler and AFM scans. The thickness of the perovskite films that was measured by Surface Profiler was in the range of 520 nm to 1200 nm by increased the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution from 0.8 M to 1.4 M. Thus, it can be indicated that the thickness of the perovskite layer is increased with the increasing of precursor concentration.

Fig. 2 shows the topography and 3D images of 0.8 M, 1.0 M, 1.2 M and 1.4 M of CH$_3$NH$_3$PbI$_3$ precursor solution that obtained from AFM scans. The scanning area for the measurement was 3 x 3 μm2 and randomly chosen from a large and uniform perovskite film with a size of 2 cm2. The topography images indicated that the surface structure of the CH$_3$NH$_3$PbI$_3$ film formation corresponding to the concentration. It can be seen in Fig. 2 (c) and (d) that the surface structures of the 1.2 M and 1.4 M CH$_3$NH$_3$PbI$_3$ were smoother than 0.8 M and 1.0 M CH$_3$NH$_3$PbI$_3$ with similar grain sizes. However, there was some large size of grains on the surface structures of 0.8 M and 1.0 M CH$_3$NH$_3$PbI$_3$. The corresponding root-mean-square (RMS) roughness values of 22.13, 19.62, 11.76 and 9.32 nm were obtained for films prepared by 0.8 M, 1.0 M, 1.2 M and 1.4 M of perovskite precursor solution respectively. From the 3D images of 0.8 M and 1.0 M CH$_3$NH$_3$PbI$_3$, the surfaces were unsmooth by high...
RMS value because of there were some uneven grains can be seen be on the surface in Fig. 2 (a) and (b). The rough surface is a drawback to the device performance due to its high probability of penetrating through the hole transport material [12] and caused light depolarization [13] that affect the efficiency of perovskite solar cell.

Based on the previous studies, some improvement of crystal growth and surface morphology had successfully obtained by either controlling CH$_3$NH$_3$I or PbI$_2$ concentration to enhance the performances of perovskite solar cell [14]–[16]. This study gave some efforts to the one-step solution technique by controlling the CH$_3$NH$_3$PbI$_3$ concentration and it indicated the good results on the surface morphology especially on the surface roughness.

B. Optical Properties of TiO$_2$/CH$_3$NH$_3$PbI$_3$ Film

UV-Vis absorbance spectra obtained in Fig. 3 were directly proportional to 0.8 M, 1.0 M, 1.2 M and 1.4 M CH$_3$NH$_3$PbI$_3$ concentrations were in a good agreement with the previous report [17]. The range of absorption wavelength for these films was from 750 nm to 800 nm, and the maximum absorption wavelength was consistent with the bandgap value of CH$_3$NH$_3$PbI$_3$, which is approximately 1.6 eV. The 0.8 M CH$_3$NH$_3$PbI$_3$ film obtained the lowest absorbance spectra, due to its low surface roughness. The modification of concentration 1.0 M, 1.2 M and 1.4 M CH$_3$NH$_3$PbI$_3$ was the reason for higher absorbance because of a better surface morphology of perovskite films in terms of surface roughness and crystalline growth. This had shown the significant correlation between the absorbance and the surface morphology of perovskite film. The film surface for 1.4 M CH$_3$NH$_3$PbI$_3$ was darker in brown colour than the other films with different concentrations that shown in the Fig. 4. Besides, some voids can be clearly seen in the large-scale area (2 cm2) of 1.4 M CH$_3$NH$_3$PbI$_3$ surface film. Therefore, the UV-Vis absorbance spectra of these different concentrations did not only depend on the surface morphology of CH$_3$NH$_3$PbI$_3$ film but also proved the Beer-Lambert's Law.

Based on the Beer-Lambert's Law, the absorbance is linearly proportional to the concentration of absorbing species that is corresponding to the attenuation of light when the light is travelling through the properties of the material. This UV-Vis data were coinciding to the Beer-Lambert's Law as expected which the increase of concentration CH$_3$NH$_3$PbI$_3$ precursor solution had affected the attenuation of light travelling. This is due to the light was absorbed by the thickness of the CH$_3$NH$_3$PbI$_3$ films. As stated in the previous section, the thicknesses of the CH$_3$NH$_3$PbI$_3$ film were related to the concentration. Thus, the absorbance was increased accordingly to the increased of CH$_3$NH$_3$PbI$_3$ precursor solution concentration.

Fig. 3. UV-Vis absorbance spectra of 0.8 M, 1.0 M, 1.2 M and 1.4 M CH$_3$NH$_3$PbI$_3$ films.
IV. CONCLUSION

In conclusion, this study had developed TiO$_2$/CH$_3$NH$_3$PbI$_3$ films with different concentrations of CH$_3$NH$_3$PbI$_3$ precursor solution, namely 0.8 M, 1.0 M, 1.2 M and 1.4 M. One-step solution deposition was used and yielded a good surface performance to the TiO$_2$/CH$_3$NH$_3$PbI$_3$ films. The smooth and low surface roughness films were produced regarding the increase in the concentration of CH$_3$NH$_3$PbI$_3$ precursor solution and precise dripping technique of CBZ. A good correlation between surface roughness (surface morphology) and concentration CH$_3$NH$_3$PbI$_3$ precursor solution was obtained. The high absorbance was yielded from the increased concentration CH$_3$NH$_3$PbI$_3$ precursor solution as expected.

ACKNOWLEDGEMENT

The authors would like to thank Solar Energy Research Institute (SERI) staff and Mohammad Firdaus Mohd Noh for the kind help in running the equipment for characterizations. This work has been carried out with the support of Universiti Kebangsaan Malaysia under Geran Universiti Penyelidikan project (GUP-2017-077).

REFERENCES