

High Performance Façade and

Overall Thermal Transfer Value (OTTV)

by

Ar Von Kok Leong

Director, Arkitek MAA Sdn Bhd Member, GBI Accreditation Panel Immed Past President, MGBC

GBI DA & CVA

> 90% compliant Wide understanding of Passive Design

and Building Envelope

<u>New</u>

Amendments to UBBL

OTTV and Roof U-value compliant

GBI RNC v3 : Prerequisite with One Point

MS1525:2007

- 1. MS1525:2007 is a Code of Practice (CP), and will be incorporated into UBBL, hence a CP becomes part of a By-law.
- 2. MS1525:2007 provides the baseline minimum standard for the GBI rating tools for energy efficient design.

MS1525:2007

MS 1525 primarily deals with building energy. The steps towards Energy Efficient buildings are:

PASSIVE MEASURES

<u>Clause 4 :</u> Architectural and Passive Design Strategy <u>Clause 5 :</u> Building Envelope

ACTIVE MEASURES

Clause 6 : Lighting

Clause 7

Power System and Distribution System

Clause 8

Air Cond and Mech Ventilation System

Clause 9

Energy Management Control System

PASSIVE DESIGN STRATEGIES Building Envelope MS1525:2007 Clause 4.2

The basic approach towards good passive design is

to orientate, to shade, to insulate, to ventilate and to daylit buildings.

PASSIVE DESIGN STRATEGIES Building Envelope MS1525:2007 Clause 4.2

The basic approach towards good passive design is

CONCEPT OF OTTV Walls and Roof

MS1525:2007 Clause 5.2 OTTV applies to building envelope MS1525:2007 Clause 5.5 Roof U-value refers to the thermal transmittance of the roof construction

CONCEPT OF OTTV BUILDING ENVELOPE

"the external portions of a building through which thermal energy is transferred" and

"this thermal transfer is the major factor affecting interior comfort level and energy usage".

CONCEPT OF OTTV MS1525:2007 Clause 5.2

A design criterion for <u>building envelope</u> known as the **Overall Thermal Transfer Value (OTTV)** has been adopted. The OTTV aims at achieving the design of building envelope to reduce heat gain through the building envelope and hence reduce the cooling load of the air-conditioning system.

The OTTV...should not exceed 50 W / m²

CONCEPT OF OTTV MS1525:2007 Clause 5.2.1

The OTTV of building envelope is given by the formula:

$$OTTV = \frac{A_{o1} \times OTTV_{1} + A_{o2} \times OTTV_{2} \dots + A_{on} \times OTTV_{n}}{A_{o1} + A_{o2} \dots + A_{on}}$$

where A_1 is the gross exterior wall area for orientation 1; OTTV₁ is the OTTV value for orientation 1; and OTTV for the whole building $\leq 50 \text{ W/m}^2$

CONCEPT OF OTTV MS1525:2007 Clause 5.2.2

The formula for the OTTV of any given wall orientation is as follows:

 $OTTVi = 15\alpha (1 - WWR) U_w + 6 (WWR) U_f + (194 \times CF \times WWR \times SC)$

CONCEPT OF OTTV MS1525:2007 Clause 5.2.2

The formula for the OTTV of any given wall orientation is as follows:

 $OTTVi = 15\alpha (1 - WWR) U_w + 6 (WWR) U_f + (194 \times CF \times WWR \times SC)$

THERMAL RESISTANCE Solar Radiation and Roof Thermal Resistance

THERMAL RESISTANCE Relationships between thermal resistance, thermal conductivity and U-value

- 1. In heat transfer, the Thermal Conductivity, *k* of a material is its ability to conduct heat.
- 2. Thermal conductivity approx tracks electrical conductivity, as moving electrons transfer not only electric current, but also heat energy.
- 3. Therefore, heat conductivity through layers of materials in a composite wall construction is analogous to adding up the resistance in an electric circuit connected in series.

THERMAL RESISTANCE Relationships between thermal resistance, thermal conductivity and U-value

- 4. Thermal Resistance, R of each material is
 R = (material thickness) ÷ (thermal conductivity, k)
- 5. Increasing the thickness of the material will increase its thermal resistance.
- 6. In a composite wall construction, the total R is

 $R_{total} = R_1 + R_2 + R_3 + \dots + R_n$

THERMAL RESISTANCE Relationships between thermal resistance, thermal conductivity and U-value

- 7. Therefore, R_{total} is the sum of the thermal resistance of all the respective materials making up the composite wall.
- U-value of the wall is the heat transmission value of the composite wall in W/m²K, and is inversely proportional to the total R,

ie, $U = 1 / R_{total}$.

9. The higher the R, the lower the U, the better.

THERMAL RESISTANCE

Relationships between thermal conductivity, thermal resistance and U-value

THERMAL RESISTANCE **Examples of thermal conductivity**, *k*

Mineral wool insulation	0.039
Mineral fibreboard	0.053
Plasterboard	0.160
Common clay brick	0.950
Glass 3mm thick	1.050
Concrete	2.160
Granite	3.810
Aluminium sheet	160.0

CONCEPT OF OTTV MS1525:2007 Clause 5.2.2

The formula for the OTTV of any given wall orientation is as follows:

 $OTTVi = 15\alpha (1 - WWR) U_w + 6 (WWR) U_f + (194 \times CF \times WWR \times SC)$

SOLAR RADIATION AND GLAZING

SOLAR RADIATION AND GLAZING

SHADING COEFFICIENT – R1

Horizontal Shading Devices Eg 2

Eg 1

MS1525:2007 Table 5

SHADING COEFFICIENT OF HORIZONTAL PROJECTIONS

RATIO		0	ORIENTATION				
	R1		North / South	East	West	North-East / South-East	North-West South-West
0.30	•	0.40	0.77	0.77	0.79	0.77	0.79
0.50		0.70	0.71	0.68	0.71	0.69	0.72
0.80		1.20	0.67	0.60	0.65	0.63	0.66
1.30		2.00	0.65	0.55	0.61	0.60	0.63

If R1 falls between increments, adopt the next larger ratio. If R1 is below 0.30, SC2 = 1. If R1 is > 2.00, SC2 values shall be the same as R1 between 1.30 and 2.00

SHADING COEFFICIENT - R1

SHADING COEFFICIENT - R2

Vertical Shading Devices

MS1525:2007 Table 6

SHADING COEFFICIENT OF VERTICAL PROJECTIONS

RATIO R2		0	ORIENTATION				
			North / South	East	West	North-East / South-East	North-West/ South-West
0.30	2	0.40	0.82	0.87	0.86	0.83	0.84
0.50	÷	0.70	0.77	0.82	0.81	0.77	0.79
0.80		1.20	0.73	0.78	0.77	0.72	0.74
1.30	-	2.00	0.70	0.75	0.74	0.69	0.71

If R2 falls between increments, adopt the next larger ratio. If R2 is below 0.30, SC2 = 1. If R2 > 2.00, SC2 values shall be the same as R2 is between 1.30 and 2.00. www.mgbc.org.my

SHADING COEFFICIENT - R2

VARIABLES OF OTTV

$OTTVi = 15\alpha (1 - WWR) U_w + 6 (WWR) U_f + (194 \times CF \times WWR \times SC)$

VARIABLES:

α
 2.WWR
 3.Uw
 3.Uf
 4.CF
 5.SC

These variables are some of the passive design parameters an architect is required to consider in the design of a building.

CASE 1: MULTIPLE TYPES OF SHADING DEVICES

CASE 1: MULTIPLE TYPES OF SHADING DEVICES

SC2: Intermediate Fins

CASE 2: ST BUILDING Self Shading Due to Pitch Angle

CASE 2: ST BUILDING Self Shading Due to Pitch Angle

CASE 2: ST BUILDING Self Shading Due to Pitch Angle

R = 1 / tan (65°) = 0.466

SC2 (N/S) = 0.71

BONUS Question: Calculate the SC

1500mm Wall

Heat gain on window = Heat Gain on All - Heat Gain on Wall

Solar Heat Gain Through Windows $194 \times CF \times WWR \times SC$

Heat gain on window = Heat Gain on All - Heat Gain on Wall

Heat gain on window = Heat Gain on All - Heat Gain on Wall

SCall=Refer Table 5 for Rall of 0.4 (0.6/1.5) = 0.77SCwall=Refer Table 5 for Rwall of 1.2 (0.6/0.5) = 0.67SCwindow * (1)=SCall * (1+0.5) -SCwindow * (1)=0.77 * (1+0.5) -SCwindow * (1)=1.155 -SCwindow * (1)=0.82

Is there an easier way?

THE ASSOCIATION OF CONSULTING ENGINEERS MALAYSIA

BEIT Software free to download from ACEM website

THANK YOU